metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chloridotris(3,5-dimethyl-1*H*-pyrazole- κN^2)(formato- κO)copper(II)–dichloridobis(3,5-dimethyl-1*H*-pyrazole- κN^2)copper(II) (2/1)

Yuliya M. Davydenko,^a Igor O. Fritsky,^a* Vadim O. Pavlenko,^a Franc Meyer^b and Sebastian Dechert^b‡

^aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and ^bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany Correspondence e-mail: mihaylichenko85@mail.ru

Received 19 April 2011; accepted 1 May 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.091; data-to-parameter ratio = 17.3.

The asymmetric unit of the title compound, [Cu(CHO₂)Cl- $(C_5H_8N_2)_3]_2 \cdot [CuCl_2(C_5H_8N_2)_2]$ or $2[A] \cdot [B]$, contains one A molecule and one half-molecule of B, located on a centre of inversion. The Cu^{II} environments in A and B are different. In A, the Cu^{II} atom is coordinated by three N atoms from three 3,5-dimethyl-1H-pyrazole (L) ligands, one O atom from a formate ligand and a chloride anion in an axial position [Cu-Cl = 2.4275(7) Å in a distorted tetragonal-pyramidal geometry. The Cu^{II} atom in B is coordinated by two N atoms from two L ligands and two chloride anions [Cu-Cl =2.2524 (6) Å] in a distorted square-planar geometry. In the crystal, intermolecular N-H···O hydrogen bonds link molecules A into centrosymmetric dimers. Intermolecular N-H···Cl hydrogen bonds further link these dimers with the Bmolecules, forming chains propagating in [101].

Related literature

For metal complexes with pyrazole and its derivatives, see: Trofimenko (1972); La Monica & Ardizzoia (1997); Casarin et al. (2005); Davydenko et al. (2009). For details of the bioinorganic chemistry of copper complexes with pyrazole, see: Krämer (1999); Raptis et al. (1999). For applications of copper complexes with pyrazole in molecular magnetism and supramolecular chemistry, see: Krämer et al. (2002); Seredyuk et al. (2007).

 $\beta = 106.650 \ (2)^{\circ}$

Mo Ka radiation

 $\mu = 1.42 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.031$

Z = 2

V = 2702.82 (14) Å³

 $0.50 \times 0.27 \times 0.19 \; \text{mm}$

36108 measured reflections

5749 independent reflections

4611 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

[Cu(CHO₂)Cl(C₅H₈N₂)₃]₂-- $[CuCl_2(C_5H_8N_2)_2]$ $M_r = 1191.53$ Monoclinic, $P2_1/c$ a = 11.4457 (3) Å b = 14.4720(5) Å c = 17.0313 (5) Å

Data collection

Stoe IPDS II diffractometer
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2002)
$T_{\min} = 0.554, \ T_{\max} = 0.763$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.091$	independent and constrained
S = 1.01	refinement
5749 reflections	$\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ Å}^{-3}$
333 parameters	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···Cl1	0.82 (4)	2.74 (4)	3.270 (2)	124 (3)
$N2-H2\cdots Cl2$	0.82 (4)	2.66 (4)	3.348 (2)	143 (3)
N9-H9···Cl1	0.79 (4)	2.30 (4)	3.081 (2)	168 (4)
$N7 - H7 \cdots O2^i$	0.72 (4)	2.19 (4)	2.903 (3)	170 (4)
$N4-H4\cdots O2^{i}$	0.87 (4)	1.98 (4)	2.850 (3)	176 (4)
$N4-H4\cdots O1^i$	0.87 (4)	2.59 (4)	3.208 (3)	128 (3)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Financial support by the Visby Program through the Swedish Institute is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5078).

References

Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.

[‡] c/o Professor Franc Meyer.

- Davydenko, Y. M., Fritsky, I. O., Pavlenko, V. O., Meyer, F. & Dechert, S. (2009). Acta Cryst. E65, m691–m692.
- Krämer, R. (1999). Coord. Chem. Rev. 182, 211-243.
- Krämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.
- La Monica, G. & Ardizzoia, G. A. (1997). Prog. Inorg. Chem. 46, 151-238.
- Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632–1634.
- Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Trofimenko, S. (1972). Chem. Rev. 93, 943–980.

Acta Cryst. (2011). E67, m732-m733 [doi:10.1107/S1600536811016461]

Chloridotris(3,5-dimethyl-1*H*-pyrazole- κN^2)(formato- κO)copper(II)-dichloridobis(3,5-dimethyl-1*H*-pyrazole- κN^2)copper(II) (2/1)

Y. M. Davydenko, I. O. Fritsky, V. O. Pavlenko, F. Meyer and S. Dechert

Comment

Metal complexes with pyrazole and its derivatives have attracted much research interest for their versatile coordination chemistry and specific properties (Trofimenko, 1972; La Monica *et al.*, 1997). Pyrazole and its derivatives exhibit several coordination modes, particularly as the 1,2-bringing form, often utilized to prevent accumulation of positive charges in metal ion assembled compounds. Due to the presence of N—N bridging function in the pyrazole ring these ligands can form polynuclear complexes with specific molecular topology (Casarin *et al.*, 2005; La Monica *et al.*, 1997). In addition, neutral 1*H*-pyrazole ligands are usually bound to metal ions *via* the pyridine-type nitrogen atom thus providing formation of the mononuclear complexes (Davydenko *et al.*, 2009). Copper (II) complexes containing pyrazole-based ligands are of particular interest in bioinorganic chemistry, as they can be used as models for the active sites of copper proteins like hemocyanine and tyrosinase (Krämer, 1999; Raptis *et al.*, 1999). These compounds have been widely used in molecular magnetism as they can exhibit specific magnetic properties and in supramolecular chemistry as they can be used as building blocks for the preparation of polynuclear complexes or coordination polymers (Krämer *et al.*, 2002; Seredyuk *et al.*, 2007).

The title compound 2[A].[B], (I), reported here, contains one molecule A (= chloro-tris(3,5-dimethyl-1H-pyrazole- κN)-formato- κO -cooper(II)) and one-half of B (= dichloro-bis(3,5-dimethyl-1H-pyrazole- κN)-cooper(II)) located on centre of inversion (Fig. 1).

In *A*, the Cu1 atom has a distorted tetragonal-pyramidal geometry with equatorial plane formed by three N atoms belonging to 3,5-dimethyl-1*H*-pyrazole ligands [Cu1—N = 1.989 (2) - 2.075 (2) Å] and one O atom from formato ligand [Cu1—O1 = 1.961 (16) Å]. The axial position is occupied by chloro anion [Cu1—Cl1 = 2.427 (7) Å]. The N—H group from one molecule of 3,5-dimethyl-1*H*-pyrazole forms an intramolecular hydrogen bond with neighboring an atom of chlorine N2–H2···Cl1 = 3.270 (2) Å. Hence, two N,H, Cl and Cu atoms form the five-membered cycle.

The Cu2 center in *B* is coordinated by two N atoms from two ligands L [Cu2–N = 2.014 (2) Å] and two chloro anions [Cu2—Cl 2.252 (6) Å] in a distorted square-planar geometry. The ligands of each sort are *trans*-oriented with respect to each other.

In the crystal structure (Fig. 2), intermolecular N—H···O hydrogen bonds (Table 1) link molecules *A* into centrosymmetric dimers. Intermolecular N—H···Cl hydrogen bonds link further these dimers with the molecules *B* into chains propagated in [101].

Experimental

Compound (I) was synthesized by oxidative dissolution method at free access of air oxygen. The mixture of 3,5-dimethyl-1*H*-pyrazole (0.96 g; 0.01 mol), ammonium chloride (0.535 g; 0.01 mol) in dimethyformamide solution (15 ml) was stirred with copper powder (0.64 g; 0.01 mol) at ambient temperature until complete dissolving of solid. The resulting dark-green

solution was filtered and the filtrate was left to stand at room temperature for crystallization in air. Slow evaporation of the solvent in 5 days yielded green crystals of (I) suitable for X-ray analysis.

Refinement

N-bound H atoms were located from the difference Fourier map and refined freely with U_{iso} (H) fixed to 0.08. The rest H atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.93-0.96 Å and with U_{iso} (H) fixed to 0.08.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and the copper coordination environment [symmetry codes: (i) 2 - x, 1 - y, 2 - z]. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines denote hydrogen bonds. C-bound H atoms omitted for clarity.

Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines.

Chloridotris(3,5-dimethyl-1*H*-pyrazole- κN^2)- (formato- κO)copper(II)– dichloridobis(3,5-dimethyl-1*H*-pyrazole- κN^2)copper(II) (2/1)

Crystal data	
$[Cu(CHO_2)Cl(C_5H_8N_2)_3]_2 \cdot [CuCl_2(C_5H_8N_2)_2]$	F(000) = 1234
$M_r = 1191.53$	$D_{\rm x} = 1.464 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 36108 reflections
a = 11.4457 (3) Å	$\theta = 1.9 - 26.8^{\circ}$
b = 14.4720 (5) Å	$\mu = 1.42 \text{ mm}^{-1}$
c = 17.0313 (5) Å	T = 120 K
$\beta = 106.650 \ (2)^{\circ}$	Block, blue
$V = 2702.82 (14) \text{ Å}^3$	$0.50 \times 0.27 \times 0.19 \text{ mm}$
<i>Z</i> = 2	
Data collection	
Stoe IPDS II diffractometer	5749 independent reflections
Radiation source: fine-focus sealed tube	4611 reflections with $I > 2\sigma(I)$

graphite

ω scans

Absorption correction: numerical	$h = -14 \rightarrow 14$
(X-RED32; Stoe & Cie, 2002)	<i>n</i> 11 11
$T_{\min} = 0.554, T_{\max} = 0.763$	$k = -18 \rightarrow 18$
36108 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.091$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0609P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5749 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
333 parameters	$\Delta \rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.83 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.73059 (2)	0.426309 (19)	0.646481 (16)	0.03259 (9)
Cu2	1.0000	0.5000	1.0000	0.03732 (11)
Cl1	0.80389 (6)	0.51219 (4)	0.77357 (4)	0.04438 (15)
Cl2	1.02066 (6)	0.36400 (4)	0.94106 (4)	0.04571 (15)
N1	0.87868 (17)	0.34752 (14)	0.66725 (12)	0.0360 (4)
N2	0.97024 (19)	0.34221 (15)	0.73835 (13)	0.0386 (4)
N3	0.78754 (18)	0.50097 (14)	0.56033 (12)	0.0377 (4)
N4	0.7119 (2)	0.50467 (16)	0.48203 (13)	0.0413 (5)
N6	0.62439 (18)	0.31213 (14)	0.65350 (13)	0.0393 (4)
N7	0.5235 (2)	0.29562 (16)	0.58991 (15)	0.0436 (5)
N8	0.83090 (19)	0.46420 (15)	1.00220 (13)	0.0392 (4)
N9	0.7440 (2)	0.44923 (17)	0.93053 (14)	0.0448 (5)
C1	1.0239 (2)	0.25280 (18)	0.65202 (17)	0.0442 (6)

H1	1.0668	0.2121	0.6284	0.080*
C2	0.9111 (2)	0.29314 (16)	0.61396 (15)	0.0372 (5)
C3	1.0590 (2)	0.28477 (17)	0.73078 (16)	0.0407 (5)
C4	0.8330 (3)	0.2839 (2)	0.52783 (17)	0.0491 (6)
H4A	0.7488	0.2820	0.5271	0.080*
H4B	0.8535	0.2279	0.5046	0.080*
H4C	0.8462	0.3358	0.4963	0.080*
C5	1.1709 (3)	0.2667 (2)	0.79957 (19)	0.0563 (7)
H5A	1.2286	0.3156	0.8024	0.080*
H5B	1.2063	0.2090	0.7905	0.080*
H5C	1.1499	0.2638	0.8502	0.080*
C6	0.8677 (3)	0.5884 (2)	0.48219 (18)	0.0547 (7)
H6	0.9216	0.6269	0.4661	0.080*
C7	0.8829 (2)	0.55265 (17)	0.56019 (15)	0.0385 (5)
C8	0.7589 (2)	0.55637 (19)	0.43374 (16)	0.0443 (6)
C9	0.9877 (2)	0.5650(2)	0.63566 (18)	0.0543 (7)
H9A	0.9576	0.5687	0.6827	0.080*
H9B	1.0305	0.6209	0.6311	0.080*
H9C	1.0421	0.5133	0.6415	0.080*
C11	0.6941 (3)	0.5685 (3)	0.34459 (17)	0.0650 (9)
H11A	0.7164	0.5193	0.3139	0.080*
H11B	0.7169	0.6267	0.3261	0.080*
H11C	0.6076	0.5674	0.3365	0.080*
C12	0.5155 (3)	0.19598 (19)	0.68291 (19)	0.0517 (7)
H12	0.4911	0.1484	0.7114	0.080*
C13	0.6201 (2)	0.25102 (17)	0.71056 (16)	0.0423 (6)
C14	0.4565 (2)	0.22632 (18)	0.60563 (19)	0.0492 (6)
C15	0.7171 (3)	0.2453 (2)	0.79031 (18)	0.0579 (7)
H15A	0.7810	0.2052	0.7847	0.080*
H15B	0.6830	0.2213	0.8315	0.080*
H15C	0.7498	0.3058	0.8061	0.080*
C16	0.3415 (3)	0.1954 (2)	0.5443 (3)	0.0763 (11)
H16A	0.3058	0.2464	0.5097	0.080*
H16B	0.2853	0.1733	0.5724	0.080*
H16C	0.3597	0.1465	0.5115	0.080*
C17	0.6545 (3)	0.4272 (2)	1.02527 (18)	0.0501 (6)
H17	0.5969	0.4145	1.0527	0.080*
C18	0.7763 (2)	0.45062 (17)	1.06020 (16)	0.0406 (5)
C19	0.6368 (2)	0.4267 (2)	0.94247 (18)	0.0491 (6)
C20	0.8437 (3)	0.4582 (2)	1.14949 (17)	0.0557 (7)
H20A	0.9297	0.4616	1.1560	0.080*
H20B	0.8265	0.4050	1.1780	0.080*
H20C	0.8179	0.5130	1.1717	0.080*
C21	0.5268 (3)	0.4061 (3)	0.8719 (2)	0.0783 (11)
H21A	0.5397	0.4290	0.8221	0.080*
H21B	0.4566	0.4357	0.8808	0.080*
H21C	0.5138	0.3406	0.8676	0.080*
C22	0.5712 (2)	0.57910 (18)	0.60437 (17)	0.0472 (6)
H22	0.6418	0.6111	0.6312	0.080*

01	0.57534 (15)	0.49305 (11)	0.60884 (11)	0.0400 (4)
O2	0.48246 (17)	0.62519 (13)	0.56778 (12)	0.0514 (5)
H2	0.966 (3)	0.371 (3)	0.779 (2)	0.080*
H4	0.650 (4)	0.467 (3)	0.467 (2)	0.080*
H7	0.515 (4)	0.318 (3)	0.551 (2)	0.080*
Н9	0.753 (4)	0.459 (3)	0.887 (3)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02773 (14)	0.03492 (15)	0.03263 (15)	0.00171 (11)	0.00467 (11)	0.00305 (11)
Cu2	0.0337 (2)	0.0406 (2)	0.0404 (2)	-0.00253 (17)	0.01504 (18)	-0.00089 (17)
Cl1	0.0514 (4)	0.0500 (3)	0.0289 (3)	0.0016 (3)	0.0069 (3)	-0.0006 (2)
Cl2	0.0451 (3)	0.0447 (3)	0.0490 (4)	-0.0002 (3)	0.0162 (3)	-0.0035 (3)
N1	0.0305 (10)	0.0389 (10)	0.0353 (10)	0.0008 (8)	0.0043 (8)	0.0000 (8)
N2	0.0339 (10)	0.0426 (11)	0.0360 (11)	0.0053 (8)	0.0048 (9)	0.0021 (9)
N3	0.0307 (10)	0.0482 (11)	0.0299 (10)	-0.0041 (8)	0.0016 (8)	0.0045 (8)
N4	0.0347 (11)	0.0536 (13)	0.0306 (10)	-0.0059 (9)	0.0015 (8)	0.0066 (9)
N6	0.0320 (10)	0.0388 (10)	0.0422 (11)	-0.0006 (8)	0.0028 (8)	0.0047 (9)
N7	0.0330 (11)	0.0440 (12)	0.0471 (13)	-0.0031 (9)	0.0009 (10)	0.0044 (10)
N8	0.0363 (11)	0.0455 (11)	0.0360 (11)	-0.0069 (9)	0.0104 (9)	-0.0047 (9)
N9	0.0426 (12)	0.0569 (13)	0.0358 (11)	-0.0059 (10)	0.0128 (10)	-0.0056 (10)
C1	0.0409 (14)	0.0433 (13)	0.0503 (15)	0.0070 (11)	0.0163 (12)	0.0002 (11)
C2	0.0360 (12)	0.0344 (11)	0.0423 (13)	-0.0010 (9)	0.0129 (10)	-0.0023 (10)
C3	0.0318 (12)	0.0401 (12)	0.0494 (14)	0.0051 (10)	0.0103 (11)	0.0093 (11)
C4	0.0466 (15)	0.0544 (15)	0.0444 (15)	-0.0014 (12)	0.0099 (12)	-0.0135 (12)
C5	0.0424 (15)	0.0629 (18)	0.0571 (18)	0.0138 (13)	0.0037 (13)	0.0100 (14)
C6	0.0412 (15)	0.075 (2)	0.0484 (15)	-0.0128 (14)	0.0142 (12)	0.0134 (14)
C7	0.0308 (12)	0.0460 (13)	0.0384 (12)	-0.0018 (10)	0.0096 (10)	-0.0004 (10)
C8	0.0412 (14)	0.0568 (16)	0.0355 (13)	0.0047 (11)	0.0118 (11)	0.0084 (11)
C9	0.0361 (14)	0.077 (2)	0.0465 (15)	-0.0117 (13)	0.0062 (12)	-0.0054 (14)
C11	0.0569 (19)	0.102 (3)	0.0348 (14)	0.0057 (17)	0.0115 (13)	0.0173 (16)
C12	0.0530 (17)	0.0415 (14)	0.0631 (18)	-0.0055 (12)	0.0205 (14)	0.0070 (13)
C13	0.0449 (14)	0.0368 (12)	0.0453 (14)	0.0025 (10)	0.0131 (11)	0.0039 (10)
C14	0.0389 (14)	0.0405 (13)	0.0656 (18)	-0.0046 (11)	0.0106 (13)	-0.0041 (13)
C15	0.066 (2)	0.0556 (17)	0.0450 (16)	-0.0010 (14)	0.0052 (14)	0.0090 (13)
C16	0.0484 (18)	0.0609 (19)	0.102 (3)	-0.0152 (15)	-0.0063 (18)	-0.0046 (19)
C17	0.0449 (15)	0.0578 (16)	0.0528 (16)	-0.0035 (12)	0.0226 (13)	-0.0044 (13)
C18	0.0435 (14)	0.0404 (12)	0.0403 (13)	-0.0034 (10)	0.0160 (11)	-0.0014 (10)
C19	0.0377 (14)	0.0598 (16)	0.0485 (15)	-0.0013 (12)	0.0103 (12)	-0.0095 (13)
C20	0.0581 (18)	0.0687 (18)	0.0406 (15)	-0.0085 (15)	0.0145 (13)	-0.0011 (13)
C21	0.0467 (18)	0.111 (3)	0.069 (2)	-0.0045 (19)	0.0029 (16)	-0.025 (2)
C22	0.0368 (13)	0.0419 (14)	0.0519 (15)	-0.0009 (11)	-0.0048 (11)	0.0017 (12)
01	0.0300 (8)	0.0390 (9)	0.0474 (10)	0.0006 (7)	0.0055 (7)	0.0020 (7)
02	0.0421 (11)	0.0473 (10)	0.0548 (11)	0.0111 (8)	-0.0022 (9)	0.0037 (9)
	0					

Geometric parameters (Å, °)

Cu1-01

C6—C8

1.363 (4)

Cu1—N1	1.989 (2)	С6—С7	1.389 (4)
Cu1—N3	2.072 (2)	С6—Н6	0.9300
Cu1—N6	2.075 (2)	С7—С9	1.496 (4)
Cu1—Cl1	2.4275 (7)	C8—C11	1.497 (4)
Cu2—N8 ⁱ	2.014 (2)	С9—Н9А	0.9600
Cu2—N8	2.014 (2)	С9—Н9В	0.9600
Cu2—Cl2	2.2524 (6)	С9—Н9С	0.9600
$Cu2-Cl2^{i}$	2.2524 (6)	C11—H11A	0.9600
N1-C2	1 332 (3)	C11—H11B	0 9600
N1—N2	1 358 (3)	C11—H11C	0.9600
N2-C3	1 347 (3)	C12—C14	1 368 (4)
N2—H2	0.82 (4)	C12—C13	1.403 (4)
N3—C7	1.324 (3)	C12—H12	0.9300
N3—N4	1.367 (3)	C13—C15	1.490 (4)
N4—C8	1.334 (3)	C14—C16	1.495 (4)
N4—H4	0.87 (4)	С15—Н15А	0.9600
N6—C13	1.325 (3)	С15—Н15В	0.9600
N6—N7	1.359 (3)	С15—Н15С	0.9600
N7—C14	1.336 (4)	C16—H16A	0.9600
N7—H7	0.72 (4)	С16—Н16В	0.9600
N8—C18	1.326 (3)	С16—Н16С	0.9600
N8—N9	1.353 (3)	C17—C19	1.366 (4)
N9—C19	1.340 (4)	C17—C18	1.392 (4)
N9—H9	0.79 (4)	C17—H17	0.9300
C1—C3	1.366 (4)	C18—C20	1.499 (4)
C1—C2	1.395 (4)	C19—C21	1.500 (4)
C1—H1	0.9300	C20—H20A	0.9600
C2—C4	1.489 (4)	C20—H20B	0.9600
C3—C5	1.491 (4)	C20—H20C	0.9600
C4—H4A	0.9600	C21—H21A	0.9600
C4—H4B	0.9600	C21—H21B	0.9600
C4—H4C	0.9600	C21—H21C	0.9600
С5—Н5А	0.9600	C22—O2	1.226 (3)
С5—Н5В	0.9600	C22—O1	1.248 (3)
C5—H5C	0.9600	С22—Н22	0.9300
O1—Cu1—N1	170.57 (8)	N3—C7—C6	109.5 (2)
O1—Cu1—N3	87.20 (8)	N3—C7—C9	121.6 (2)
N1—Cu1—N3	89.99 (8)	С6—С7—С9	128.8 (2)
O1—Cu1—N6	85.42 (7)	N4—C8—C6	106.1 (2)
N1—Cu1—N6	90.96 (8)	N4—C8—C11	121.4 (3)
N3—Cu1—N6	139.85 (8)	C6—C8—C11	132.5 (3)
O1—Cu1—Cl1	95.08 (5)	С7—С9—Н9А	109.5
N1—Cu1—Cl1	94.34 (6)	С7—С9—Н9В	109.5
N3—Cu1—Cl1	105.43 (6)	Н9А—С9—Н9В	109.5
N6—Cu1—Cl1	114.51 (6)	С7—С9—Н9С	109.5
N8 ⁱ —Cu2—N8	180.0	Н9А—С9—Н9С	109.5
N8 ⁱ —Cu2—Cl2	89.56 (6)	Н9В—С9—Н9С	109.5
N8—Cu2—Cl2	90.44 (6)	C8—C11—H11A	109.5

N8 ⁱ —Cu2—Cl2 ⁱ	90.44 (6)	C8—C11—H11B	109.5
N8—Cu2—Cl2 ⁱ	89.56 (6)	H11A—C11—H11B	109.5
Cl2—Cu2—Cl2 ⁱ	180.000 (1)	C8—C11—H11C	109.5
C2—N1—N2	106.2 (2)	H11A—C11—H11C	109.5
C2—N1—Cu1	127.41 (17)	H11B—C11—H11C	109.5
N2—N1—Cu1	126.29 (16)	C14—C12—C13	106.2 (2)
C3—N2—N1	111.1 (2)	C14—C12—H12	126.9
C3—N2—H2	128 (3)	C13—C12—H12	126.9
N1—N2—H2	120 (3)	N6-C13-C12	109.9 (2)
C7—N3—N4	105.55 (19)	N6—C13—C15	122.1 (2)
C7—N3—Cu1	136.28 (17)	C12—C13—C15	128.0 (2)
N4—N3—Cu1	118.13 (15)	N7-C14-C12	106.3 (2)
C8—N4—N3	111.7 (2)	N7-C14-C16	121.8 (3)
C8—N4—H4	127 (3)	C12—C14—C16	132.0 (3)
N3—N4—H4	120 (3)	C13—C15—H15A	109.5
C13—N6—N7	105.4 (2)	C13—C15—H15B	109.5
C13—N6—Cu1	135.97 (18)	H15A—C15—H15B	109.5
N7—N6—Cu1	118.17 (16)	C13—C15—H15C	109.5
C14—N7—N6	112.2 (2)	H15A—C15—H15C	109.5
C14—N7—H7	126 (3)	H15B—C15—H15C	109.5
N6—N7—H7	121 (3)	C14—C16—H16A	109.5
C18—N8—N9	105.5 (2)	C14—C16—H16B	109.5
C18—N8—Cu2	135.42 (18)	H16A—C16—H16B	109.5
N9—N8—Cu2	119.08 (15)	C14—C16—H16C	109.5
C19—N9—N8	111.7 (2)	H16A—C16—H16C	109.5
C19—N9—H9	124 (3)	H16B—C16—H16C	109.5
N8—N9—H9	124 (3)	C19—C17—C18	106.1 (2)
C3—C1—C2	106.7 (2)	С19—С17—Н17	127.0
C3—C1—H1	126.7	С18—С17—Н17	127.0
C2—C1—H1	126.7	N8—C18—C17	110.2 (2)
N1—C2—C1	109.4 (2)	N8—C18—C20	122.0 (2)
N1—C2—C4	121.2 (2)	C17—C18—C20	127.8 (2)
C1—C2—C4	129.4 (2)	N9—C19—C17	106.5 (2)
N2—C3—C1	106.6 (2)	N9—C19—C21	121.4 (3)
N2—C3—C5	122.3 (2)	C17—C19—C21	132.1 (3)
C1—C3—C5	131.1 (2)	C18—C20—H20A	109.5
C2—C4—H4A	109.5	C18—C20—H20B	109.5
C2—C4—H4B	109.5	H20A—C20—H20B	109.5
H4A—C4—H4B	109.5	C18—C20—H20C	109.5
C2—C4—H4C	109.5	H20A—C20—H20C	109.5
H4A—C4—H4C	109.5	H20B—C20—H20C	109.5
H4B—C4—H4C	109.5	C19—C21—H21A	109.5
С3—С5—Н5А	109.5	C19—C21—H21B	109.5
С3—С5—Н5В	109.5	H21A—C21—H21B	109.5
H5A—C5—H5B	109.5	C19—C21—H21C	109.5
С3—С5—Н5С	109.5	H21A—C21—H21C	109.5
H5A—C5—H5C	109.5	H21B—C21—H21C	109.5
H5B—C5—H5C	109.5	O2—C22—O1	125.9 (2)

C8—C6—C7	107.2 (2)	O2—C22—H22	117.1			
С8—С6—Н6	126.4	O1—C22—H22	117.1			
С7—С6—Н6	126.4	C22—O1—Cu1	121.76 (16)			
N3—Cu1—N1—C2	-61.4 (2)	C3—C1—C2—C4	178.6 (3)			
N6—Cu1—N1—C2	78.5 (2)	N1—N2—C3—C1	0.6 (3)			
Cl1—Cu1—N1—C2	-166.9 (2)	N1—N2—C3—C5	179.6 (2)			
N3—Cu1—N1—N2	115.12 (19)	C2—C1—C3—N2	-0.4 (3)			
N6—Cu1—N1—N2	-105.02 (19)	C2—C1—C3—C5	-179.2 (3)			
Cl1—Cu1—N1—N2	9.65 (19)	N4—N3—C7—C6	-0.2 (3)			
C2—N1—N2—C3	-0.6 (3)	Cu1—N3—C7—C6	-177.8 (2)			
Cu1—N1—N2—C3	-177.71 (17)	N4—N3—C7—C9	-179.3 (2)			
O1—Cu1—N3—C7	128.2 (3)	Cu1—N3—C7—C9	3.1 (4)			
N1—Cu1—N3—C7	-60.8 (3)	C8—C6—C7—N3	-0.2 (3)			
N6—Cu1—N3—C7	-152.3 (2)	C8—C6—C7—C9	178.7 (3)			
Cl1—Cu1—N3—C7	33.7 (3)	N3—N4—C8—C6	-0.8 (3)			
O1—Cu1—N3—N4	-49.16 (18)	N3—N4—C8—C11	178.3 (3)			
N1—Cu1—N3—N4	121.84 (18)	C7—C6—C8—N4	0.6 (3)			
N6—Cu1—N3—N4	30.4 (2)	C7—C6—C8—C11	-178.3 (3)			
Cl1—Cu1—N3—N4	-143.66 (16)	N7—N6—C13—C12	-0.3 (3)			
C7—N3—N4—C8	0.7 (3)	Cu1—N6—C13—C12	171.4 (2)			
Cu1—N3—N4—C8	178.75 (18)	N7—N6—C13—C15	178.8 (2)			
O1-Cu1-N6-C13	-125.8 (3)	Cu1—N6—C13—C15	-9.4 (4)			
N1—Cu1—N6—C13	62.9 (3)	C14—C12—C13—N6	0.4 (3)			
N3—Cu1—N6—C13	154.0 (2)	C14—C12—C13—C15	-178.7 (3)			
Cl1—Cu1—N6—C13	-32.3 (3)	N6—N7—C14—C12	0.1 (3)			
O1—Cu1—N6—N7	45.19 (18)	N6-N7-C14-C16	-179.6 (3)			
N1—Cu1—N6—N7	-126.09 (19)	C13—C12—C14—N7	-0.3 (3)			
N3—Cu1—N6—N7	-35.0 (2)	C13-C12-C14-C16	179.4 (3)			
Cl1—Cu1—N6—N7	138.70 (17)	N9—N8—C18—C17	-0.2 (3)			
C13—N6—N7—C14	0.1 (3)	Cu2—N8—C18—C17	179.3 (2)			
Cu1—N6—N7—C14	-173.38 (18)	N9—N8—C18—C20	178.3 (2)			
Cl2—Cu2—N8—C18	117.9 (3)	Cu2-N8-C18-C20	-2.2 (4)			
Cl2 ⁱ —Cu2—N8—C18	-62.1 (3)	C19-C17-C18-N8	0.2 (3)			
Cl2—Cu2—N8—N9	-62.61 (18)	C19—C17—C18—C20	-178.1 (3)			
Cl2 ⁱ —Cu2—N8—N9	117.39 (18)	N8—N9—C19—C17	0.2 (3)			
C18—N8—N9—C19	0.0 (3)	N8—N9—C19—C21	-179.5 (3)			
Cu2—N8—N9—C19	-179.60 (19)	C18—C17—C19—N9	-0.2 (3)			
N2—N1—C2—C1	0.3 (3)	C18—C17—C19—C21	179.4 (4)			
Cu1—N1—C2—C1	177.43 (17)	O2—C22—O1—Cu1	165.4 (2)			
N2—N1—C2—C4	-178.4 (2)	N3—Cu1—O1—C22	-51.9 (2)			
Cu1—N1—C2—C4	-1.3 (3)	N6-Cu1-O1-C22	167.6 (2)			
C3—C1—C2—N1	0.0 (3)	Cl1—Cu1—O1—C22	53.3 (2)			
Symmetry codes: (i) $-x+2, -y+1, -z+2$.						

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N2—H2…Cl1	0.82 (4)	2.74 (4)	3.270 (2)	124 (3)

N2—H2…Cl2	0.82 (4)	2.66 (4)	3.348 (2)	143 (3)
N9—H9…Cl1	0.79 (4)	2.30 (4)	3.081 (2)	168 (4)
N7—H7···O2 ⁱⁱ	0.72 (4)	2.19 (4)	2.903 (3)	170 (4)
N4—H4···O2 ⁱⁱ	0.87 (4)	1.98 (4)	2.850 (3)	176 (4)
N4—H4…O1 ⁱⁱ	0.87 (4)	2.59 (4)	3.208 (3)	128 (3)

Symmetry codes: (ii) -x+1, -y+1, -z+1.

Fig. 1

